
UCRL- 8299?
PREPRINT

A Serial InterprocessorCommunications
System

William Labiak
Philip Siemens
Carolyn Bailey

CIRCULATIONCOPY
SU6JE(X TO RECALL

!/4 IWO WEEKS This ‘aperD~:sp::;;e;: n::r Submittal to

Anaheim, California
Apri1 19, 1980

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

,
8

I

A SERIAL INTERPROCESSORCOMMUNICATIONS SYSTEff

William Labiak
Lawrence Livermore Laboratory

Llvermore,California

Philip Siemens
Carolyn Bailey

Menlo Computer Associates
Palo Alto, California

ABSTRACT

A serial communicationssystem based on the EIA RS232-C
standardwith modem control lines has been developed. The
DLV1l-E interface is used for this purpose. All
handshakingis done with the modem control Tines. This
allows totally independentfull duplex communication. The
message format consists of eight bit data w~th odd parity
and a sixteen bit checksum on the whole message. All
communicationsare fully interrupt driven. A program was
written to load a program into a remote LSI-11 using the
serial 1ine without bootstrapROM.

DESCRIPTIONOF COMPUTER NETWORK

A large fusion energy experiment,the Mirror
Fusion Test Facility, Is under construction at
Lawrence Livermore Laboratory.This experiment
will be computer controlled. A hierarchical
computer system has been developedto perform
this function. The top level is the Supervisory
Control and DiagnosticsSystem (SCDS). It con-
sists of nine Interdata32 bit computers. These
computers are interconnectedthrough a shared
memory. The next level is the Local Control and
InstrumentationSystem (LCIS) consistingof65
LSI-lll computers connected to the Interdata
computers with serial lines. The LSI-11’S are
interfaced to the experimentthrough the CAMAC
system. Because of the large number of LSI-11’S,
it is important that coinnunicationusing the
serial lines be efficient and inexpensive. The
Supervisory to Local IntercommunicationProtocol
(SLIP) was developed to accomplishthis.

HARDWARE SOFTWARETRADEOFFS

In order to improve reliabilityand decrease
cost, the LSI-11’~ have only a CPU, 32K words of
memory, a OLV1l-E and a CAJ4ACserial driver
interface. NO other peripheralsare used. A
method had to be developed to bootstrap these
computers. The console ODT provides suffic~ent
capability to load the DEC absolute loader. From
that point, the system can be brought up fully.
This required the OLY1l-E to be at the console
address, however, the cost of a EIDV1lper system
was saved.

PROTOCOL DEFINITION

The communications protoco? proceeds in the
following way. A transaction is initiatedby the

*Work performed under the auspices of the U.S.
Department of Energy by the Lawrence Livermore
Laboratory under contract number W-7405-ENG-48.

transmitter setting the request to send (RQ2S).
The receiver gets this signal on its carrier
detect line. If the receiver fs ready, It sets
the data terminal ready (OTR) line which is con-
nected to the clear to send (CL2S) on the trans-
mitter. The transmitterthen sends the message
and a 16 bit checksum. When the message is
complete, the receiver calculates the checksum
and compares it with the one transmitted. If,it
is correct and no parity errors have occurred, an
Acknowledge (ACK) is sent to the transmitter. If
:~e:nm an error, a negative acknowledge (NAK)

. The ACK or NAK is sent by the receiver
clearing its OTR line and setting the secondary
transmit line high for an ACK and low for a NAK.
The transmitter looks at its secondary receiver
line for the ACK or NAK when it sees CL2S
cleared. The transmitterthen clears RQ2Swhlch
ends the transaction. If the transmitter sees a
NAK, it may retransmit {f desired. (Fig. 1, 2)

Local COnwd
cOmpJwr
[LSI-l$J

Trm8mitter

RCUS

cm

RCR

C2rricr Omat

OTR

ST

Rmiwf

C4rrier Chtacl

OTR

RCT

Tr-tta

Rozs

CL2S

SR

F!gure 1 Inter-ConnectionDiagram

,

I
I

8’

●

Both the transmitter and receivermust know the
length of a message before it is sent. If a
different length message is to be sent, the
length of that message may be specified in the
previous message. This can be implementedin
general by a short header message followed by a
data message.

The transmitter can abort by clearing its RQ2S
line. The receiver may abort by clearing its DTR
line. If the transmitterdoes not get CL2S after
a certain time or see CL2S cleared at the end of
transmission, it will timeout and clear RQ2S.
If the receiver does not receive the appropriate
number of characters or the carrter cleared after
sending an ACR or hAK~ it will time out and abort.

nWait
m

We also had to implement a virtual terminalcapa-
bility so that we could interactwith the remote
from the host’s terminal. This situation led to
problems because it was often difficult to de-
termine in which machine a bug was occurring.

PROGRAMMER TEAM

The software described was designed and coded by
a two person programmer team consisting of a
senior systems level progransaerand an entry
level programer. The senior programmw?rprovided
the design along with periodic support durfng the.
coding and debug phases of the project. The
entry level programmer did the coding, debuggi ,

7and documentation. This arrangementworked wel .

m

Figure 2 State Diagram

DEVELOPMENT SYSTEM CONFIGURATION

The system on which the software was developed
consisted of two computers. One, which we
labeled the host, was a reasonable software de-
velopment system running the RT-11 operating
system. The other, labeled the remote, was a
bare bones system.

The host consisted of a32K word LSI-11/2 with
dual floppy disks, a VT-52 CRT terminal, an
LA-180 printer, and DLV1l/E serial line inter-
face. Midway through the project, a 10 Mbyte
cartridge disk was added. Needless to say, there
was a noticeable improvementin throughput. We
could do several more compilationsper day than
with the floppy disks, and our file management
problems were eased since we no longer had to
maintain several floppy disks with our files on
them. The host used the RT-11 V3B operating.
system and two languages -- MACRO-11and OMSI
Pascal-1. TECO was the only editor used --
normally with a screen oriented editing macro.

The remote consisted of a32K word LSI-11/2 with
a single DLV1l/E which was connected to the
OLV1l/E on the host. The remote OLV1l/E was in-
stalled at the console terminal address (dev~ce
address 177560). There were no other interfaces
installed on the remote -- no terminals,mass
storage, or bootstrap ROM.

Because of the hardware configuration,we first
set about to design and code a down loading pro-
gram so we could load programs into the remote.

The junior programmer’s experience previousto
this project consisted of FORTRAN and POP-8 as-
sembly language. Nevertheless,Pascal and
MACRO-11 were quite easily learned. We used a
subset of Pascal with only three elementarydata
types (integer, char, and array of char). Within
a COUP1e of days, working programs were being
produced, which seems to indicate that Pascal is
Indeed a simple language to learn and use.
MACRO-11programs were likewise produced within a
reasonable time, although they were not speed or
space efficient. It seems that new PDP-11 pro-
grammers, especially those with only POP-8 ex-
perience, have difficulty at first making
efficient use of the POP-11’S registers.

GENERAL COMMUNICATIONROUTINES

In order to establish two way cofnnunicatlons
between a host and some remotes, a set of general
coasnunicationroutines were written. These rou-
tines were written tn assembly language as Pascal
callable procedures. They were intendedtobe
used in a stand-alone remote (. S1-11 (although
they worlcequally well with an RT-11 system).
The routines provide stx.basic functionswhich
are described below.

Initialization

A procedure called SLIPINIT initializesa number
of parameters concerning the protocol routines.
An example call is:

SLIPINIT (TIME, TRYNUM, ERROR).

TIME is an integer argumentwhich sets the time
out period allowableon Ccmsnunicationtasks.
Time is measured in clock ticks. TRYNUM is the
number of times a message is tried to be sent or
received before an error is reported to the
caller. ERROR is an error flag which is returned
as O if no errors occurred during the initial-
ization process.

Send Message

There are three routinesused to send messages,
depending upon the degree of concurrency de-
sired. The first is a send and wait procedure
called as:

SENDH (DATA, LENGTH, ERRoR).

DATA is the name of a variable (usually an array
or record) containingthe characters to be sent.
LENGTH specifies the number of characters to be
sent. ERROR is an error f1ag which is returned
as zero if there are no errors.

A message transmissionmay be started and then
overlapped with the executionof the calling pro-
gram with the SEND (data, length, error) pro-
cedure. The variablesare the same as described
above. Once the message transmissionis started,
control returns to the caller. Eventually, the
calling program must synchronizewith the message
transmissionwith the WAITSENO (error)pro-
cedure. WAITSEND will only return to the caller
when the message has been completely transmitted.

To invoke a completionroutine when the message
has been transmitted,the SENDC (data, length,
error, complrtn) proceduremay be called. The
variables are as describedabove except that
COMPLRTN is the name of a procedure which will be
invoked when the message transmissionhas been
completed. Completionroutine procedures are
restricted to be globally accessibleprocedures.

Receive Routines

There are a set of three receive message routines
which compliment the three message transmission
routines descibed above. They are invoked by:

RECVW (DATA, LENGTH, ERROfi)
.

RECV (DATA, LENGTH, ERROR); WAITRECEIVE (ERROR)

RECVC (DATA, LENGTH, ERROR, COMPLRTN)

The arguments are the same as described for the
transmissionroutines.

Status Routines

The current status of the send or receive rou-
tines can be determinedby using the following
procedures:

SENOST (STATE,

RECVST (STATE,

LSTATE, CNT, RETRY, TIME)

LSTATE, CNT, RETRY, TIME).

These procedures return the five
caller. STATE gives the
Send states are:

o -- Idle
1 -- request to send has

for clear to send
-- sending data

: -- sending checksum
4 -- waiting for ACKINAK
5 -- received an ACK
6 -- received a NAK

current
arguments to the
protocol state.

been asserted,waiting

7 .- aborting transmission

Receive states are:

idle
waiting for request to send frcmltransmitter
asserted clear to send, waiting for data
receiving data
receiving the checksum
sent ACK, waiting for sender to go idle
sent NAK, waiting for sender to go idle
aborting receiver
messaqe too short, NAl(.waitinq for sender
to go-fdle “ - -

LSTATE Is simply the last state before the
current one. In this way, one can determine the
particular error state which occurred before
idle. CNT is the number of bytes in the message
yet to be sent or received. RETRY indicates how
many times the message has been retried due to
errors. TIME indicateshow many clock ticks re-
main before the send or receive timer times out.

Error Status

An accumulatederror count is kept for certain
receive errors. Th~s accumulatedcount may be
retrieved by: ‘

ERRSTATUS (PECNT, ORCWT, SMCNT).

PECNT returns the total number of messages with
parity errors, ORCNT returns the total nunber of
overrun errors, and SMCNT returns the total
number of short messages. This procedure sets
these three counters to zero so that a new
accumulationbegins.

Aborting A Transmission

Both the send and receive message operat~on can
be aborted before completion. TkIisallows a
higher priority message to be dealt with as
rapidly as possible. The proceduresABORTSEND
and ABORTRECEIVE (no arguments are used) ac-
complish these tasks.

Exiting to RT-11 Monitor ,

Before exiting to the monitor (assuming the com-
munication routines are being used with an RT
system), some clean-upwork must be done, or
trouble may result. First of all, interrupts
from the remote must be disabled since the moni-
tor does not know what to do with them.
Secondly, clock vectors must be restored to the
normal RT-11 configuration,or the system will
crash. A procedure called SLIPX is provided to
perform this clean up before exit, but the user

must still be careful in how the exit to monitor
js accomplished.

DOWNLOADER

The downloader allowed user programs to be trans-
ferred from the host system into the remote
LSI-11. It consisted of two distinctly different
parts -- the “WOST” system tiich sent the program
downline and acted as a virtual terminal for the
remote, and the 1oaders which ran in the remote
to receive the program coming downline.

The “HOST” portion of the downloader and large
portions of the remote were written in Pascal in
a top-down fashlon. Because of the intimate
nature of the softwarewfth the hardware; how-
ever, we made use of some non-standardfeatures
in OMSI Pascal-1 (like the ability to reference
an absolutemanory location).
The “HOST” downloaderprogram consisted of the
following procedures:

begin

send break;

turn remote interruptsoff;

send L command;

send absolute loader (ABSLDR);

send protocol loader;

send user file

end.

Send Break

The remote’s serial interface(DLV-11/E) was
strappedsuch that when a “BREAK” was received,
the remote would be halted and a bus initialize
signal generated. Line “BREAKs” are generated
differently,dependingon the characteristicsof
the host’s serial interface. With the LSI-11
host using a OLV-11/E interface,a “BREAK” was
generated by setting bit O in the XCSR register
to a 1 and then sending 3 nul1 characters to
insure that the line was in a break condition
long enough for the remote to detect it.

Upon yeceiving a break, the remote sent a
sequence of charactersback to the host. Several
tens of character times after sending the
“BREAK,” the host checked the last character it
had received from the remote. If it was an “@”
character, the “BREAK” was assumed to have
worked. If not, the “BREAK” was sent again.
After a total of three tries, a fatal error was
reported on the host’s terminal.

Turn Remote InterruptsOff

Because the clock vectors in the remote had not
been set, it was necessary to turn the remote’s
interruptsoff so no clock interruptswould
occur. To accomplishthis. the host first opened

er was not a Space , then the “RS/” was resent
up to three times before a fatal error was
reported. With the PSW resister opened, the host
sent “200 cr “ to turn the remote processor’s
interrupts off and close the PSW. Again, the
remote sent back a character $tring, and the host
checked the last character to insure that it was
an “@” character.

L Command

We initially used thel command of the LSI-11/2
~n the download process. The L conmand, of
course, is a built-in feature of the LSI-11/2’s
micro-code. When this command is sent to the
remote, the remote enters a boot ?oader mode
which is normally used for loading paper tapes.
The host, however, can emulate a paper tape
reader and send the remote a character stream in
the expected boot format.

The host sends the string “177560L” to the re-
mote, which then enters boot loader mode. The
host then sends an ABSLOR to the remote. When
the ABSLDR has completely loaded, it autostarts
and immediatelysends a one character ACK/NAK
message to the host. HOST will try to load the
ABSLDR three times before reporting a fatal error.

ABSLDR was written in assembly language rather
than Pascal because the constraint of using the
boot loader format required it to be small.
After the ACK/NAK, ABSLDR waits to receive a pro-
gram in standard .LDA (absolutebinary) format.
This format essentiallyconsists of a number of :
blocks consistin of header, data, and checksum.

YIf any of the ca culated block checksums do not
agree ‘withthe transmittedchecksums, an internal
error flag is set. When the whole program has
been received, the ABSLOR will again send an
ACK/NAK character to the host. The whole purpose
of the ABSLDR is to load a larger loader program
which operates under the SLIP protocol.

Protocol Loader

All but a few small modules of the protocol
loader were written in Pascal. We were concerned
about the size of the loader, but it required
less than 1088 bytes, which was acceptable in our
applications.

The protocol loader was totally position inde-
pendent. When started, it immediatelyrelocated
itself into high memory, overlaying the ABSLDR.
The protocol loader then handshakes with the host
according to SLIP protocol rules. Messages are
fixed at 256 bytes long. One byte of the block
is a flag byte; the rest are data in standard
.LOA (absolute) format. The flag byte is used to
indicate end of message If a checksum error
occurs (either in the protocol checksum or in the
absolute binary (.LDA) data block checksum), the
protocol loader NM’s and requests retrans-
mission. At the end of the message, the protocol
loader starts the received program if the
starting address is even, or waits for another
program to be downloaded if the starting address
is odd.

the
The
Psw

remote’s PSW by sending an “RS/” downline.
remote should reply with the contents of its
followed by a space . If this last charact-

●

9

LSI-11 tioSt

The LSI-11 “HOST” program allowed a user at an
RT-11 system to download a program into a remote
LSI-11 and then interactwith that remote through
a virtual terminal facility. Since characters
were received from the remote (19.2 Kbaud) faster
than they could be printed on a terminal (typi-
cally 9600 baud), a small ring buffer (1K bytes)
,was used. All characterstyped at the host’s
keyboard, except for four control characters,
were passed through to the remote. Characters
from the remote were passed through to the host’s
terminal, except for an “@” character which was
changed to an “&” character. This was done so
the user would not get confused about which
LSI-11 was in console OOT state. The ctitrol
characterswere:

control B
Send a “BREAK” to the remote.

control D
Oownload a user specified program
‘into the remote. The user is
prompted for a file specifica-
tion. The file supplied must be
in .LDA format.

control c
Normal exit to the RT-11 monitor.
The current state of the remote is
unchanged.

control F
Load another program into the
remote using the protocol loader.
The initialbootstrapping with the
A8SLOR, etc., is bypassed. This
is valid only if the previously
loaded file did not start
execution.

SCOS Host

After the total system was up and running using
an LSI-11 host with the LSI-11 remotes, the host
program (written In Pascal) was moved to the
Perkin-Elmermachines. This was not as straight-
forward as one would like. The Pascal in use on
the Perkin-Elmerswas not standard, so quite a
few changes were required. In addition, it was
essentially impossibleto implement a virtual
terminal. Finally, an unforseen hardware inter-
action required a major change in the download
procedure. This can be described as follows.

The SCOS host system interfacerequired the
OLV-11/E to have its Data Terminal Ready (OTR)
signal asserted before it could send any charac-
ters to the remote. This required a small modi-
fication to be made to the OLV-11/E so that its
OTR signal would be initializedhigh (asserted)
whenever a bus initializesignal occurred. Ue
encounteredno problems with this scheme while
debuggingwith the LSI-11 host (it had no such
hardware restrictionsand could send characters
even if the remote’s DTR signal was not as-
serted). However, we hit an imnediate problem
when we moved the system to the SCOS host.

The problem can be described as follows. Ouring
the download processing,the host would send
“177560L” causing the remote to,enter its paper
tape boot Toader microcode. At thts point, DTR
would be cleared, and the host could no longer
transmit characters to the remote.

It rapidly became apparent that the LSI-11
micro-code to execute the L cotmnanddid writes
into the OLV-11/E receiver control status
register and cleared the DTR bit. Thus, we could
not use the L ccumnandto load the ABSLOR, but
rather had to load it via console 00T as a series I
of octal words.

TECHNIQUESOF GENERAL INTEREST

Some of the techniques in these prograns may be
of general interest. These will be described
below.

Posting Requests

Generally, for each state in the state diagrams,
(Fig. 2) we implementeda code sequence. Each
code sequence would be entered upon the occur-
rence of a particularevent. In order to simpli-
fy the progransning,we adopted a convention which
we called posting requests for these events.
When a request was posted, it designated which
event was desired and the address of the code
sequence to go to when that event occurred.
Macros were written which handled the posting of
these requests. The generatedcode to handle
these requests was handled in various ways.

For instance, in the message transmissionrou-
tine, there were three code sequences used to
service the transmitterbuffer empty interrupt.
These were: (a) send another data character, (b)
send first byte of the checksum, and (c) send the
last byte of the checksum. We defined a macro
.PXBUF as follows:

.MACRO .PXBUF A
A,@#XVEC

.E%!

where XVEC was equated to the transmitter vector
address. Invoking .PXLiUFthen sets the vector to
point to a new interruptservice routine.

Requests for service upon the occurrence of a
receiver or modem interruptwere handled dif-
ferently. Here, posting a request set the inter-
rupt service routine address into a pointer
word. When the particularevent occurred, aJSR
through the pointer word was performed. The
interrupt $ervice routine executed and then
exited via an RTS PC. Thess requests could also
be cancelled, in which case the occurrence of the
event was simply ignored.

Posting timer requests was similar, except a
timer value was specified in addition to the rou-
tine address. Uhen the timer e%pired, the speci-
fied routine was invoked.

As an example, here are sane short code fragments
illustrating the use of these macros.

.

;Start a message transmissionby asserting
request to send

...

.PRCL1 #CL2Sl

.TTIMR TIME,TIM1

e

. . .

Modem Vectorin~

;Here we request that when
;clear to send goes to 1, the
;interrupt service routine at
;CL2S1 is invoked

;Start a timer with a value of
;TIME ticks. If it times out,
;invoke the code at TIM1.
;This insures that we do not
;hang if we never see clear to
;send asserted

A modem interruptoccurred whenever one of the
three modem lines changed state (either a zero to
one or a one to zero transition). We were only
interested in changes on two of the lines --
Carrier Detect and Clear to Send. Modem inter-
rupts from other sources were ignored. Since we
needed to know which bit caused the interrupt and
in which direction its transitionwas, we main-
tained a copy of the modem line states at the
last interrupt. By comparing the current modem
line state with the last state, we could tell
what line caused the interrupt.

Our first version did actual“comparesand
branches to decode what transitioncaused an
interrupt,but this code had more overhead in it
than we wished. We finally arrived at a branch
table configuration(similar to a CASE
structure). This was the best we could do for
processing speed, although we still wished for
something better. A skeleton of this code is
shown below.

;Both chdracter ready and modem’interruptsvector
here

$RMINT: TSTB @#RCSR ;Check for character
;ready

BPL SMOOX ;Branch if no
;characteris ready

... ...
;Service the character which is ready
,..

$MOOX: PUSH
MOV

SWAB

ASR

BIC

%1s

LASTMO: O
JMP

. . .

RO ;Save RO on the stack
@#RCSR,RO ;set copy of RCSR into

;RO
RO ;set modem bits to low

;byte
RO ;shift right

#@C30,R0 ;Keep new modem state
;0000000 000 ONtiOOO

(PC)+,RO ;Or in old modem state
;0 000000000 ONN LLO
;RO now indexes into a
;16 entry branch table

@ATABL(RO) ;Go to the proper
;service routine

ATABL: $.EXIT
$.CARO
$.CL20
$.CARO

$.CAR1
$.EXIT
...
...

$.CARO: EIICB

. . .

$.CL20: BICB

. . .

$.CARI: BISB

. . .

Timers

;No change
;Carrierwent to O
;Clear tb send went toO
;Both carrier and clear to
;send went to O
;Carrierwent to a 1
;No change

#2,LAsTMo

#4,LASTMD

#2,LAsTMo

;Update last modem
;interruptstate
;60 to particular
;service routine

;Update last modera
;interrupt state
;Go to particular
;service routine

;Update last modem
;interruptstate
;Go to particular
;service routine

It was necessary to put time-out periods on some
of the communicationtasks. If an operation did
not complete within the allotted time period,
then some error was indicated. Only two timers
were required, one for the transmit process and
one for the receive process. These timer rou-
tines were interesting in that they were trans-
parent to any other clock routines in the machine.

It was assumed that the user’s program would set
up the clock vector as required for its use and
then call the protocol consnunicationinitializa-
tion routine. This initializationroutine would
insert the timer routines between the clock vec-
tor and the user’s clock service routines by
saving the current clock vector and then setting
the vector to point to the communicationtimer
service routines. The timer service routines
would not dismiss via an RTI but would jump to
the user’s clock routines with the PSW set
properly. These routines were used with the
RT-11 operating system with the restrictionthat
before program exit the clock vector had to be
restored to normal.

Speed Techniques

Some considerable effort was expended in order to
make the general communicationroutines as fast
as possible. The techniqueswe used should be
generally applicable. First of all, we noted
that absolute addressingmodes on the LSI-11/2
execute faster than relative addressingmodes
(source and destination times are approximately
15% faster). Therefore,.weassembled all the
routines with the MACRO-11 directive .ENABL AM
which causes absolute addressing to be the de-
fault instead of relative.

It should be obvious that effectivelyusing the
resisters leads not only to the fastest code, but
also to the smallest. Although we kept this in
mind while writing the code, we neverthelesswere
able to improve performance in an iterative
manner by repeatedly checking the code for places

where we could rearrange the code to make better
use of the resisters.

The critical areas were those code sequences
executed during an interrupt. Our original
design goal called for full duplex connwnication
at 9600 baud. This meant we would be handling
two interruptsper millisecond (one for the
transmitter and one for the receiver). A short
code sequence from the receive character inter-
rupt service routinewill illustratesome speed
techniques.

RRBUF: .PRBUF #RRBUFl

MOV #SHORT,R.

RRBUF1; MOV #O,$RTIMR

TIME2= RRBUF1+2

IMR

MOV

BPL

MOV

PCONT: DEC

RCTR1 O

BEQ
MOVB

REBUF1: O

INC

. . .

@#RBUF,-(SP)

PCONT

(SP),OPFLG

(Pc)+

RSLIP
(sP+,@(PC)+

@#RBUFl

Set uu next
character
ready interrupt
to go to RRBUF1
Set up a timer to
detect if the
message is shorter
ithan we exDect,
;If timer expires,
;go to SHORT
;Reset the timer to
;its initial value
;An initialization
;routine sets
;RRBUF1+2to
;its initial value
;save character on
;the stack
;Branch if there is
;no error
;Save the error for
;1ater
;Oecrementthe char
;counterfor this
;message
;Immediate
;addressingis
;fastest here
;Branch if done
;Store the
;character in the
;buffer
;Pointer into the
;buffer
;Incrementthe
;buffer point

Note that while the techniques illustratedabove
may be fast, they are not necessarilygood pro-
crramninapractice frmn other points of view.
~everth~less,we were able to’achieve full duplex
transmission at 19.2K baud -- the equivalent of
one interrupt every 250 microseconds.

T-Bit Problem

Periodically,we would find that we co+:dsn:~sget
our downloader to run in the remote.
often true after the remote had been powered up.
An examination of memory would show that our pro-
gram had been wiped out and memory would be
filled with a particularrepeatingpattern.

The problem was finally traced to the following.
The LSI-11/2 can power up with the T-bit “sort of
set.” We say “sort of set” because if you ex-
amine the PSW with the 00T command RS/ you will
find the T-bit on, but in fact no trace traps

will occur until after the first interrupt
occurs. That is, after power up, the PSW may
show the T-bit on, but no trap~wil? occur until
after the first interrupt. When the first irlter-
rupt occurs, the PSW with the T-bit on is pushed
onto the stack, and the interruptservice routine
is executed. When the interrupt is dismissed
with the RTI instruction,the PSW is reloaded
with a pop from the stack, and now the T-bit is
“really” on. A trace trap then occurs with a
vector to location 14. Since we did not expect
trace traps, we had not initializedthe vector,
so it contained whatever it was set to at power
up.

Interestingly,tt was not a random value. After
power up, memory consistentlycontains alternate
words of all zeroes and al? ones. (This also
occurs with memory systems other than those manu-
factured by OEC.) Thus, location 14 contained a
O and 16 contained 177777. When the first trace
trap occurred, the old PC and PSW were pushed
onto the stack, the new PC was set to O, and the
new PSW set to 377. Note that the T-bit was
still set, so instead of executing the in-
struction in locationO, another trace trap
occurred. Continuous trace traps now occurred
until the stack pointer decremented down th%ugh
O and a double bus error occurred. Memory, from
the initial stack pointer value (we set out stack
pointer to high memory during the loading pro-
cess) down to locationO was filled with alter-
nate words of O and 377. We protected ourselves
against this occurrenceby the following:

.ASECT

.=14 ;Initialize the
;T-bit vector

CLTBIT
340

CLT61T: MOV #340,2(SP) ;Replace old PSW
;which had T-bit set

RTI ;with new one with
;T-bit cleared

PROBLEMS WITH BA1l BACK PLANE

This communicationssvstem was first develoDed
for communicationsbe~ween two LSI-11’S. This
system can be used between any two LSI-11’S, and
the communicationsplace no restriction on the
address of the DLV1l-E. An interestinghardware
problem occurs, however, if the BA1l-NE chassis
is used. This chassis has a 9 x 4 backplane with
nine Q-bus slots and nine slots for the RLV1l
controller board to board interconnect. If a
system with CPU, memory, terminal interface,
floppy disc, RLO1 hard disc, printer interface,
OLV1l-E for communications,and bootstrap is used
there are no extra Q-bus slots, yet there are
seven unused backplane connectors. Many other
applicationsrequire more than nine Q-bus slots.
It would be very desireableto have an 8 x 4
backplane with sixteen Q-bus slots and an RLO1
controller on a single quad board. The BAII-NE
chassis is excellent electricallyMC! mechani-
cally, and if it had a larger capacity backplane
it would be used more. As it is, other sources
must be used.

I

I

I

I

●

DEC Q-BUS INTERFACECHIPS

While developingthe communicationsprograms, a
problem with the DCO03 interrupt control chip was
found. Occasionally,the transmitter done inter-
rupt would not occur. This was tracked down with
test programs and a logic analyzer. Once in a
while the UART would send out the transmitter
done but the DCO03 would not send the interrupt
request. The output of the UART has a very long
riSe thIU? and sometimes it is torislow for the
DCO03 interrupt input. The protdem is solved by
buffering this signal through extra gates on the
DLV1l-E. This is the correction suggested in an
ECO given by DEC after we pointed the problem out
to them. it is sug ested that the DCO03 chip be

7driven by TTL clrcu ts in any design.

Two InterruptsOn Same Vector Problem

As we began to use the DLV-11/E, it became ap-
parent that it was not designed to be used in the
manner we intended to use it. Both character
ready and modem interruptswere handled through
the same vector, and this presented some problems
since both could be occurring simultaneously.
First of all, we wanted to process character
ready interruptsas efficiently as possible, but
since we always had to check to see if it was a
modem interrupt,we added additional overhead
into each character interrupt. Secondly, the
standard DLV-11/E clears the modem interruptflag
whenever the RCSR is referenced, either by a OATI
(read) or DATO (write) cycle. This means that in
the process of setting or clearing one of the
modem control bits, a modem interrupt could be
lost. The problem was finally solved by another
small modificationto the OLV-11/E such that the
modem interruptflag would be cleared only by an
explicit instruction. (One of the programmable
baud rate bits in the XCSR was used since pro-
grammable baud rates were disabled.)

In general, it is not a good idea to have simul-
taneously occurring interruptsgoing through the
same vector. Interruptprocessing overhead goes
up, and in some cases, like the DLV-11/E, fool-
proof code may be impossibleto write.

CONCLUSION

It took nine months to develop this software.
The hardware problems which cropped up took about
25 percent of the time to identify and solve.
The system has been running reliably for almost
one year.

Cormrrcsnicationsbetween two computers is always
difficult to accomplish,but once a system is
running, applicationsare easy. Marryprograms
using these communicationsprocedures have been
written and are running successfully.

ACKNOWLEDGEMENT

We would like to thank P.R. McGoldrick for
developing the protocol and O. N. Butner for his
aid in testing with the Interdata computers.

REFERENCES

1. Microcomputer Processors Oi~ital Equipment
Corp., Maynard, f1~78)

2. Memories and Peripherals Oigital Equipment
Torp., Maynard, (T978)

NOTICE

This report was prepared as an account of work sponsored by the United
States Government. Neither the United States nor the UnitedStates
Departmentof Energy,nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness or usefulness of any information, apparatus,
product or process disclosed, or represents that its use would not infringe
privtitely-owned rights.

Refcicncc to a company or product name does not imply approval or
recommendation of the product by the University of California or the U.S.
Department of Energy to the exclusion of others that may be suitable.

,

